ارزیابی مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان در ریزمقیاس کردن مکانی - زمانی سری های زمانی بارش

نویسندگان

  • بابک امین نژاد گروه عمران - آب، دانشکده فنی و مهندسی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
  • نیما فربودفام گروه عمران - آب، دانشکده فنی و مهندسی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
  • وحید نورانی گروه عمران-آب، دانشکده عمران، دانشگاه تبریز، تبریز، ایران گروه عمران - آب، دانشکده فنی و مهندسی، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
چکیده مقاله:

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک – حداقل مربعات ماشین بردار پشتیبان (WLSSVM) پیشنهاد شده و داده های سری زمانی ماهانه شش ایستگاه و روزانه چهار ایستگاه بارش حوضه آبریز دریاچه ارومیه، برای 10 سال بوسیله تبدیل موجک به زیرسری های زمانی تجزیه شده و سپس با استفاده از معیارهای اطلاعات متقابل و ضریب همبستگی، زیرسری ها رتبه بندی شده و برای ریزمقیاس کردن سری زمانی ماهانه ایستگاه های تبریز و سهند به روزانه، زیرسری های برتر به عنوان داده های ورودی به مدل حداقل مربعات ماشین بردار پشتیبان (LSSVM) وارد شد. نتایج حاصل از مدل WLSSVM، با نتایج کاربرد روش LSSVM و روش کلاسیک رگرسیون چند متغیره خطی، مقایسه شد. در مجموع نتایج مدل WLSSVM نسبت به مدل های LSSVM و رگرسیون چند متغیره خطی برای اعتبارسنجی در حالت بهینه ایستگاه تبریز به ترتیب 10% و 37.5% و در حالت بهینه ایستگاه سهند، به ترتیب 24.5% و 46.7% افزایش نشان داد. لذا ملاحظه گردید که روش WLSSVM نسبت به دو روش دیگر، دقت بالاتری داشته و به عنوان روشی مناسب جهت ریزمقیاس کردن سری های زمانی بارش پیشنهاد می گردد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN)...

متن کامل

ارزیابی مدل حداقل مربعات ماشین بردار پشتیبان در برآورد تبخیر و مقایسه با مدلهای تجربی

در این تحقیق با استفاده از پارامترهای هواشناسی در دشت بیرجند در استان خراسان جنوبی در دوره 16 ساله به ارزیابی عملکرد آزمون گاما و مقایسه دقت مدل‌های حداقل مربعات ماشین­بردار و روش‌های تجربی به‌منظور تخمین میزان تبخیر پرداخته شد.  با استفاده از روش آزمون گاما از میان پارامترهای تأثیرگذار بر تبخیر، پارامترهای بهینه ورودی جهت مدل‌سازی تخمین تبخیر از میان 90 ترکیب معین، تعیین گردید. تعداد 7 ترکیب ب...

متن کامل

پیش‌بینی رواناب روزانه با مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)

مدل‌های داده محور از جمله ابزارهایی هستند که به منظور شبیه‌سازی در علوم مختلف استفاده می‌شوند. روش ماشین بردار پشتیبان به عنوان یکی از جدیدترین این نوع ابزارها اخیراً در علوم مرتبط با آب مورد توجه قرار گرفته است. در هیدرولوژی و منابع آب، این مدل‌ها با شبیه‌سازی فرآیند بارش-رواناب، مقدار رواناب را در حوزه‌های آبخیز بدون ایستگاه اندازه‌گیری و با حداقل زمان ممکن و کمترین هزینه برآورد می‌کنند. هدف ا...

متن کامل

استفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان

پیش­بینی مقادیر جریان ورودی به سیستم منابع آب به­منظور آگاهی از شرایط آینده و برنامه­ریزی برای تخصیص بهینه منابع آب به بخش­های مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب می­باشد. هدف از پژوهش حاضر پیش­بینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از داده­های هیدرومتری ایستگاه قزاقلی با دوره­ آماری 47 سال و سه مدل سری­زمانی، شبکه عصبی و ماشین بردار پشت...

متن کامل

پیش‌بینی جریان با استفاده از مدل ماشین بردار پشتیبان بر مبنای سری های زمانی دبی و بارش در ایستگاه‌های بالادست (مطالعه موردی : ایستگاه هیدرومتری تله زنگ)

در این پژوهش به منظور پیش‌بینی دبی ماهانه ایستگاه هیدرومتری تله زنگ از مدل ماشین بردار پشتیبان (svm) و آمار 10 ایستگاه هیدرومتری و 8 ایستگاه باران‌سنجی بالادست آن در طول یک دوره آماری 20 ساله (1371-1390) استفاده شد. لذا در اولین گام تاثیر استفاده از سری‌های زمانی دبی، بارش و ترکیبی از این دو پارامتر به عنوان ورودی و در گام بعد تاثیر تعداد ایستگاه‌های هیدرومتری و باران‌سنجی بالادست بر نتایج پیش‌...

متن کامل

ارائه‌ی روشی پویا برای پیش‌بینی مکانی-زمانی آلودگی هوای شهر تهران بر مبنای ماشین بردار پشتیبان

با توجه به آثار سوء آلودگی هوا بر سلامت انسان‌ها و محیط، پیش‌بینی و مدلسازی این پدیده از جمله مسائل مهم در چند دهه‌ی گذشته بوده است. دینامیک غیر‌خطی و حجم بالای داده‌های آلودگی هوا، مشکلات پیش‌بینی این پدیده‌ی پیچیده را، بویژه در پردازش‌های پویا، دوچندان کرده است. هدف این پژوهش، ارائه‌ی الگوریتمی برخط است که بتواند با حل مشکلات روش‌های پیشین در پیش‌بینی برخط آلودگی هوا، سری زمانی آلودگی هوای شه...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 3

صفحات  45- 66

تاریخ انتشار 2019-04-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023